Effect of Pre-Exposure Prophylaxis (PrEP) on immune responses systemically and mucosally in healthy individuals in the CAPRISA 082 study- (PrEP Underlying Mucosal-immunity Before/After - PUMBA)
TMA2017SF-1960
EDCTP2
Senior Fellowship (SF)
Department | Institution | Country |
---|---|---|
South Africa |
Centre for the AIDS programme of Research in South Africa
Senior Scientist
Background: People living with HIV (PLWH) have been reported to have a higher risk of more severe COVID-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2-infected unvaccinated participants.
Methods: We enrolled participants who were vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in healthcare workers (HCWs). PLWH in this group had well-controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant.
Results: Most Ad26.CoV2.S vaccinated HCWs were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared with the infected-only group and 26-fold higher relative to the vaccinated-only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2-infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of nonresponders, with the highest frequency of nonresponders in people with HIV viremia. Vaccinated-only participants showed low neutralization capacity.
Conclusions: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well-controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2-infected and nonvaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals.
The RV144 HIV-vaccine trial highlighted the importance of envelope-specific non-neutralizing antibody (nNAb) Fc-mediated functions as immune correlates of reduced risk of infection. Since pre-exposure prophylaxis (PrEP) and HIV-vaccines are being used as a combination prevention strategy in at risk populations, the effects of PrEP on nNAb functions both mucosally and systemically remain undefined. Previous animal and human studies demonstrated reduced HIV-specific antibody binding avidity post-HIV seroconversion with PrEP, which in turn may affect antibody functionality. In seroconverters from the CAPRISA 004 tenofovir gel trial, we previously reported significantly higher detection and titres of HIV-specific binding antibodies in the plasma and genital tract (GT) that distinguished the tenofovir from the placebo arm. We hypothesized that higher HIV-specific antibody titres and detection reflected corresponding increased antibody-dependent neutrophil-mediated phagocytosis (ADNP) and NK-cell-activated antibody-dependent cellular cytotoxic (ADCC) activities. HIV-specific V1V2-gp70, gp120, gp41, p66, and p24 antibodies in GT and plasma samples of 48 seroconverters from the CAPRISA 004 tenofovir gel trial were tested for ADCP and ADCC at 3, 6- and 12-months post-HIV-infection. GT gp41- and p24-specific ADNP were significantly higher in the tenofovir than the placebo arm at 6 and 12 months respectively (p < 0.05). Plasma gp120-, gp41-, and p66-specific ADNP, and GT gp41-specific ADCC increased significantly over time (p < 0.05) in the tenofovir arm. In the tenofovir arm only, significant inverse correlations were observed between gp120-specific ADCC and gp120-antibody titres (r = -0.54; p = 0.009), and gp41-specific ADNP and gp41-specific antibody titres at 6 months post-infection (r = -0.50; p = 0.015). In addition, in the tenofovir arm, gp41-specific ADCC showed significant direct correlations between the compartments (r = 0.53; p = 0.045). Certain HIV-specific nNAb activities not only dominate specific immunological compartments but can also exhibit diverse functions within the same compartment. Our previous findings of increased HIV specific antibody detection and titres in women who used tenofovir gel, and the limited differences in nNAb activities between the arms, suggest that prior PrEP did not modulate these nNAb functions post-HIV seroconversion. Together these data provide insight into envelope-specific-nNAb Fc-mediated functions at the site of exposure which may inform on ensuing immunity during combination HIV prevention strategies including PrEP and HIV vaccines.
Introduction: Optimizing methods for genital specimen collection to accurately characterize mucosal immune responses is a priority for the HIV prevention field. The menstrual cup (MC) has been proposed as an alternative to other methods including cervicovaginal lavage (CVL), but no study has yet formally compared these two methods.
Methods: Forty HIV-infected, antiretroviral therapy-naïve women from the CAPRISA 002 acute HIV infection cohort study were randomized to have genital fluid collected using the MC with subsequent CVL, or by CVL alone. Qualitative data, which assessed levels of comfort and acceptability of MC using a 5-point Likert scale, was collected. Luminex multiplex assays were used to measure HIV-specific IgG against multiple gene products and 48 cytokines.
Results: The majority (94%) of participants indicated that insertion, wearing and removal of the MC was comfortable. Nineteen MCs with 18 matching, subsequent CVLs and 20 randomized CVLs were available for analysis. Mucosal IgG responses against four HIV-antigens were detected in 99% of MCs compared to only 80% of randomized CVLs (p = 0.029). Higher specific antibody activity and total antibodies were observed in MCs compared to CVL (all p<0.001). In MCs, 42/48 (88%) cytokines were in the detectable range in all participants compared to 27/48 (54%) in CVL (p<0.001). Concentrations of 22/41 cytokines (53.7%) were significantly higher in fluid collected by MC. Both total IgG (r = 0.63; p = 0.005) and cytokine concentrations (r = 0.90; p<0.001) correlated strongly between MC and corresponding post-MC CVL.
Conclusions: MC sampling improves the detection of mucosal cytokines and antibodies, particularly those present at low concentrations. MC may therefore represent an ideal tool to assess immunological parameters in genital secretions, without interfering with concurrent collection of conventional CVL samples.
Advances in molecular tools to characterize the microbiome have led to the discovery of unique roles for microbes in human disease. Findings that the female genital microbiome can influence HIV acquisition and prevention emphasize the importance of microbiome analysis in clinical trials that assess the efficacy of HIV prevention interventions.
There is an urgent need to identify immunological markers of tuberculosis (TB) risk in HIV co-infected individuals. Previously we have shown that TB recurrence in HIV co-infected individuals on ART was associated with markers of systemic inflammation (IL-6, IL1β and IL-1Rα). Here we examined the effect of additional acute inflammation and microbial translocation marker expression on risk of TB recurrence. Stored plasma samples were drawn from the TB Recurrence upon Treatment with HAART (TRuTH) study, in which individuals with previously treated pulmonary TB were screened for recurrence quarterly for up to 4 years. Recurrent TB cases (n = 37) were matched to controls (n = 102) by original trial study arm assignment and ART start date. Additional subsets of HIV infected (n = 41) and HIV uninfected (n = 37) individuals from Improving Recurrence Success (IMPRESS) study were sampled at active TB and post successful treatment completion. Plasma concentrations of soluble adhesion molecules (sMAdCAM, sICAM and sVCAM), lipopolysaccharide binding protein (LBP) and transforming growth factor-beta (TGF-β1, TGF-β2, TGF-β3) were measured by multiplex immunoassays and ELISA. Cytokine data was square root transformed in order to reduce variability. Multivariable analysis adjusted for a number of potential confounders measured at sample time-point: age, BMI, CD4 count, viral load (VL) and measured at baseline: presence or absence of lung cavities, previous history of TB, and WHO disease stage (4 vs 3). The following analytes were associated with increased risk of TB recurrence in the multivariable model: sICAM (aOR 1.06, 95% CI: 1.02-1.12, p = 0.009), LBP (aOR 8.78, 95% CI: 1.23-62.66, p = 0.030) and TGF-β3 (aOR 1.44, 95% CI 1.01-2.05, p = 0.044). Additionally, we observed a positive correlation between LBP and sICAM (r= 0.347, p<0.0001), and LBP and IL-6, identified to be one of the strongest predictors of TB risk in our previous study (r=0.623, p=0.03). These data show that increased risk of TB recurrence in HIV infected individuals on ART is likely associated with HIV mediated translocation of microbial products and the resulting chronic immune activation.
Vaginal microbiota have been shown to be a modifier of protection offered by topical tenofovir in preventing HIV infection in women, an effect not observed with oral tenofovir-based pre-exposure prophylaxis (PrEP). It remains unclear whether PrEP can influence the vaginal microbiota composition. This study investigated the impact of daily oral tenofovir disoproxil fumarate in combination with emtricitabine for PrEP on the vaginal microbiota in South African women. At baseline, Lactobacillus iners or Gardnerella vaginalis dominant vaginal communities were observed in the majority of participants. In cross sectional analysis, vaginal microbiota were not affected by the initiation and use of PrEP. Longitudinal analysis revealed that Lactobacillus crispatus-dominant "cervicotypes 1 (CT1)" communities had high probability of remaining stable in PrEP group, but had a higher probability of transitioning to L. iners-dominant CT2 communities in non-PrEP group. L. iners-dominant communities were more likely to transition to communities associated with bacterial vaginosis (BV), irrespective of PrEP or antibiotic use. As expected, BV-linked CTs had a higher probability of transitioning to L. iners than L. crispatus dominant CTs and this shift was not associated with PrEP use.
Several clinical trials have demonstrated that antiretroviral (ARV) drugs taken as pre-exposure prophylaxis (PrEP) can prevent HIV infection, with the magnitude of protection ranging from -49 to 86% (refs. ). Although these divergent outcomes are thought to be due primarily to differences in product adherence, biological factors likely contribute. Despite selective recruitment of higher-risk participants for prevention trials, HIV risk is heterogeneous even within higher-risk groups. To determine whether this heterogeneity could influence patient outcomes following PrEP, we undertook a post hoc prospective analysis of results from the CAPRISA 004 trial for 1% tenofovir gel (n = 774 patients), one of the first trials to demonstrate protection against HIV infection. Concentrations of nine proinflammatory cytokines were measured in cervicovaginal lavages at >2,000 visits, and a graduated cytokine score was used to define genital inflammation. In women without genital inflammation, tenofovir was 57% protective against HIV (95% confidence interval (CI): 7-80%) but was 3% protective (95% CI: -104-54%) if genital inflammation was present. Among women who highly adhered to the gel, tenofovir protection was 75% (95% CI: 25-92%) in women without inflammation compared to -10% (95% CI: -184-57%) in women with inflammation. Immunological predictors of HIV risk may modify the effectiveness of tools for HIV prevention; reducing genital inflammation in women may augment HIV prevention efforts.
Background: Effective, long-acting prevention approaches are needed to reduce human immunodeficiency virus (HIV) incidence. We evaluated the safety and pharmacokinetics of VRC07-523LS and PGT121 administered subcutaneously alone and in combination as passive immunization for young women in South Africa.
Methods: CAPRISA 012A was a randomized, double-blinded, placebo-controlled, dose-escalation phase 1 trial. We enrolled 45 HIV-negative women into 9 groups and assessed safety, tolerability, pharmacokinetics, neutralization activity, and antidrug antibody levels. Pharmacokinetic modeling was conducted to predict steady-state concentrations for 12- and 24-weekly dosing intervals.
Results: VRC07-523LS and PGT121, administered subcutaneously, were safe and well tolerated. Most common reactogenicity events were injection site tenderness and headaches. Nine product-related adverse events were mild and transient. Median VRC07-523LS concentrations after 20 mg/kg doses were 9.65 μg/mL and 3.86 μg/mL at 16 and 24 weeks. The median week 8 concentration after the 10 mg/kg PGT121 dose was 8.26 μg/mL. Modeling of PGT121 at 20 mg/kg showed median concentrations of 1.37 μg/mL and 0.22 μg/mL at 16 and 24 weeks. Half-lives of VRC07-523LS and PGT121 were 29 and 20 days. Both antibodies retained neutralizing activity postadministration and no antidrug antibodies were detected.
Conclusions: Subcutaneous administration of VRC07-523LS in combination with optimized versions of PGT121 or other antibodies should be further assessed for HIV prevention.
Genital inflammation significantly increases the risk for HIV infection. The seminal environment is enriched in pro-inflammatory cytokines and chemokines. Here, we investigated the interplay between semen cytokines and humoral immunity to understand whether the characteristics of semen antibodies are associated with genital inflammation. In 36 HIV-infected and 40 HIV-uninfected mens' semen, HIV-specific antibodies (gp120, gp41, p66, and p24), immunoglobulin (Ig) subclasses, isotypes and cytokines, using multiplex assays, were measured. Semen IgG1, IgG3, and IgM were significantly higher in HIV-infected compared to HIV-uninfected men (p < 0.05). In HIV-uninfected men, pro-inflammatory cytokines IL-6, IL-8, and MCP-1 significantly correlated with IgG1 and total IgG (IgG1+IgG2+IgG3+IgG4) (both r≥0.55; p≤0.001). Total IgG in HIV-infected men correlated to HIV-specific antibodies in the semen irrespective of antiretroviral (ARV) use. In HIV-infected, ARV-treated men, p66 and gp41-specific antibodies were inversely correlated with IL-6 and MIP-1α (both r≥-0.65, p≤0.03). In HIV-infected, ARV-naïve men, p24 and gp120-specific antibodies correlated significantly with pro-inflammatory TNF-α (r≥0.44, p≤0.03), while p24 antibodies correlated significantly with chemokine MIP-1β (r = 0.45; p = 0.02). Local cytokines/chemokines were associated with the mucosal-specific Ig subclasses which likely effect specific antibody functions. Together, these data inform on mucosal-specific immunity that may be elicited in the male genital tract (MGT) in future vaccines and/or combination HIV prevention strategies.
Background: Broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the HIV envelope glycoprotein have been identified in blood from HIV-1 infected women. We investigated whether antibodies in the genital tract from these women share similar epitope specificities and functional profiles as those in blood.
Methods: Immunoglobulin (Ig)G and IgA antibodies were isolated from cervicovaginal lavages or Softcups from 13 HIV-infected women in the CAPRISA cohort using Protein G and Peptide M, respectively. Binding antibodies to envelope antigens were quantified by ELISA and binding antibody multiplex assay. Neutralizing antibody titers and epitope targets were measured using the TZM-bl assay with Env-pseudotyped wild-type and mutated viruses.
Results: HIV-specific IgG, but not IgA, was detected in genital secretions and the ratio of total IgG to HIV-specific IgG was similar to plasma. HIV-specific IgG reacted with multiple envelope antigens, including V1V2, gp120, gp140 and gp41. Two women had high plasma titers of HIV-specific IgG3 which was also detected in their genital tract samples. IgG from the genital tract had neutralizing activity against both Tier 1 and Tier 2 primary HIV-isolates. Antibodies targeting well known glycan epitopes and the membrane proximal region of gp41 were detected in genital secretions, and matched specificities in plasma.
Conclusions: Women with plasma bNAbs have overlapping specificities in their genital secretions, indicating that these predominantly IgG isotype antibodies may transudate from blood to the genital tract. These data provide evidence that induction of systemic HIV-specific bNAbs can lead to antiviral immunity at the portal of entry.
Genital inflammation is an established risk factor for increased HIV acquisition risk. Certain HIV-exposed seronegative populations, who are naturally resistant to HIV infection, have an immune quiescent phenotype defined by reduced immune activation and inflammatory cytokines at the genital tract. Therefore, the aim of this study was to create an immune quiescent environment using immunomodulatory drugs to mitigate HIV infection. Using an in vitro peripheral blood mononuclear cell (PBMC) model, we found that inflammation was induced using phytohemagglutinin and Toll-like receptor (TLR) agonists Pam3CSK4 (TLR1/2), lipopolysaccharide (LPS) (TLR4) and R848 (TLR7/8). After treatment with anti-inflammatory drugs, ibuprofen (IBF) and betamethasone (BMS), PBMCs were exposed to HIV NL4-3 AD8. Multiplexed ELISA was used to measure 28 cytokines to assess inflammation. Flow cytometry was used to measure immune activation (CD38, HLA-DR and CCR5) and HIV infection (p24 production) of CD4+ T cells. BMS potently suppressed inflammation (soluble cytokines, p<0.05) and immune activation (CD4+ T cells, p<0.05). BMS significantly reduced HIV infection of CD4+ T cells only in the LPS (0.98%) and unstimulated (1.7%) conditions (p<0.02). In contrast, IBF had minimal anti-inflammatory and immunosuppressive but no anti-HIV effects. BMS demonstrated potent anti-inflammatory effects, regardless of stimulation condition. Despite uniform immunosuppression, BMS differentially affected HIV infection according to the stimulation conditions, highlighting the complex nature of these interactions. Together, these data underscore the importance of interrogating inflammatory signaling pathways to identify novel drug targets to mitigate HIV infection.
Background: Mannose-binding lectin (MBL-2) allele variants are associated with deficiencies in innate immunity and have been found to be correlated with HIV infection in adults and children.
Objective: We tested whether MBL-2 variants among infants born to HIV-positive mothers have an increased susceptibility to HIV.
Design: MBL-2 allele variants were measured among 225 infants born to HIV-positive mothers enrolled in a trial in Durban, South Africa. Mothers of 108 infants were randomly assigned to receive vitamin A and beta-carotene supplementation and 117 to receive placebo. Infants were followed with regular HIV tests to determine rates of mother-to-child HIV transmission.
Results: A high proportion of infants were either homozygous (10.7%) or heterozygous (32.4%) for MBL-2 variants. MBL-2 variants within the placebo arm were associated with an increased risk of HIV transmission (odds ratio: 3.09; 95% CI: 1.21, 7.86); however, MBL-2 variants within the supplementation arm were not associated with an increased risk of transmission (P = 0.04; test of interaction). Among infants with MBL-2 variants, supplementation was associated with a decreased risk of HIV transmission (odds ratio: 0.37; 95% CI: 0.15, 0.91).
Conclusion: We observed what appears to be a gene-environment interaction between MBL-2 variants and an intervention with vitamin A plus beta-carotene that is relevant to mother-to-child HIV transmission.
Inflammatory cytokines augment humoral responses by stimulating antibody production and inducing class-switching. In women, genital inflammation (GI) significantly modifies HIV risk. However, the impact of GI on mucosal antibodies remains undefined. We investigated the impact of GI, pre-HIV infection, on antibody isotypes and IgG subclasses in the female genital tract. Immunoglobulin (Ig) isotypes, IgG subclasses and 48 cytokines were measured prior to HIV infection in cervicovaginal lavages (CVL) from 66 HIV seroconverters (cases) and 66 matched HIV-uninfected women (controls) enrolled in the CAPRISA 004 and 008 1% tenofovir gel trials. Pre-HIV infection, cases had significantly higher genital IgM (4.13; IQR, 4.04-4.19) compared to controls (4.06; IQR, 3.90-4.20; p = 0.042). More than one-quarter of cases (27%) had GI compared to just over one-tenth (12%) in controls. Significantly higher IgG1, IgG3, IgG4 and IgM (all p < 0.05) were found in women stratified for GI compared to women without. Adjusted linear mixed models showed several pro-inflammatory, chemotactic, growth factors, and adaptive cytokines significantly correlated with higher titers of IgM, IgA and IgG subclasses (p < 0.05). The strong and significant positive correlations between mucosal antibodies and markers of GI suggest that GI may impact mucosal antibody profiles. These findings require further investigation to establish a plausible biological link between the local inflammatory milieu and its consequence on these genital antibodies.
Genital inflammation (GI) undermines topical human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP) efficacy through unknown mechanisms. Here, associations between activated endocervical CD4 + T-cell numbers and higher deoxyadenosine triphosphate (dATP) concentrations suggest that competition for intracellular metabolites within HIV target cells may reduce the efficacy of antiretroviral-based PrEP in women with GI.
Neutralizing (nAbs) and high affinity binding antibodies may be critical for an efficacious HIV-1 vaccine. We characterized virus-specific nAbs and binding antibody responses over 21 months in eight HIV-1 subtype C chronically infected individuals with heterogeneous rates of disease progression. Autologous nAb titers of study exit plasma against study entry viruses were significantly higher than contemporaneous responses at study entry (p=0.002) and exit (p=0.01). NAb breadth and potencies against subtype C viruses were significantly higher than for subtype A (p=0.03 and p=0.01) or B viruses (p=0.03; p=0.05) respectively. Gp41-IgG binding affinity was higher than gp120-IgG (p=0.0002). IgG-FcγR1 affinity was significantly higher than FcγRIIIa (p<0.005) at study entry and FcγRIIb (p<0.05) or FcγRIIIa (p<0.005) at study exit. Evolving IgG binding suggests alteration of immune function mediated by binding antibodies. Evolution of nAbs was a potential marker of HIV-1 disease progression.
Introduction: New HIV prevention strategies are urgently required. The discovery of broadly neutralising antibodies (bNAbs) has provided the opportunity to evaluate passive immunisation as a potential prevention strategy and facilitate vaccine development. Since 2014, several bNAbs have been isolated from a clade C-infected South African donor, CAPRISA 256. One particular bNAb, CAP256-VRC26.25, was found to be extremely potent, with good coverage against clade C viruses, the dominant HIV clade in sub-Saharan Africa. Challenge studies in non-human primates demonstrated that this antibody was fully protective even at extremely low doses. This bNAb was subsequently structurally engineered and the clinical variant is now referred to as CAP256V2LS.
Methods and analysis: CAPRISA 012B is the second of three trials in the CAPRISA 012 bNAb trial programme. It is a first-in-human, phase I study to assess the safety and pharmacokinetics of CAP256V2LS. The study is divided into four groups. Group 1 is a dose escalation of CAP256V2LS administered intravenously to HIV-negative and HIV-positive women. Group 2 is a dose escalation of CAP256V2LS administered subcutaneously (SC), with and without the dispersing agent recombinant human hyaluronidase (rHuPH20) as single or repeat doses in HIV-negative women. Groups 3 and 4 are randomised placebo controlled to assess two (CAP256V2LS+VRC07-523LS; CAP256V2LS+PGT121) and three (CAP256V2LS+VRC07-523LS+PGT121) bNAb combinations administered SC to HIV-negative women. Safety will be assessed by the frequency of reactogenicity and adverse events related to the study product. Pharmacokinetic disposition of CAP256V2LS alone and in combination with VRC07-523LS and PGT121 will be assessed via dose subgroups and route of administration.
Ethics and dissemination: The University of KwaZulu-Natal Biomedical Research Ethics Committee (BREC) and the South African Health Products Regulatory Authority (SAHPRA) have granted regulatory approval (trial reference numbers: BREC00000857/2019 and SAHPRA 20200123). Trial results will be disseminated through conference presentations, peer-reviewed publications and the clinical trial registry.
Trial registration number: PACTR202003767867253; Pre-results.
Human papillomavirus (HPV) infection correlates with higher rates of HIV acquisition, but the underlying biological mechanisms are unclear. Here we study associations between HPV and HIV acquisition and relate these to vaginal cytokine profiles in an observational cohort of women at high risk of HIV infection (CAPRISA 004, n = 779) and with 74% HPV prevalence. We report here that HPV infection associates with a 2.5-fold increase in HIV acquisition risk in this population (95% CI: 1.2-5.3). Among 48 vaginal cytokines profiled, cytokines associated with HPV infection overlap substantially with cytokines associated with HIV risk, but are distinct from those observed in HPV negative women. Although our data do not establish a causative link between HPV status and the risk of HIV, we suggest that increasing HPV vaccination coverage may carry an additional benefit of reducing the risk of contracting HIV infection, particularly in regions with high HPV prevalence.
Background: Mucosal and systemic immune mediators have been independently associated with HIV acquisition risk, but the relationship between compartments remains unclear.
Methods: To address this, the concentrations of 12 cytokines were compared in matched plasma and cervicovaginal lavages (CVLs) from 57 HIV-positive women before their acquisition of HIV (cases) and 50 women who remained uninfected (controls) during the CAPRISA 004 trial.
Results: Although genital IP-10 concentrations were significantly higher in cases, plasma IP-10 concentrations were inversely associated with HIV risk. Comparing differences in mucosal and systemic cytokine concentrations between cases and controls, mucosa-biased gradients indicating higher cervicovaginal lavage relative to plasma concentrations were observed for all 5 chemokines in the panel. Four were significantly associated with HIV acquisition, including IP-10 (odds ratio [OR] 1.73, 95% confidence interval [CI]: 1.27 to 2.36), macrophage inflammatory protein-1β (OR 1.72, 95% CI: 1.23 to 2.40), interleukin (IL)-8 (OR 1.50, 95% CI: 1.09 to 2.05), and monocyte chemotactic protein-1 (OR 1.36, 95% CI: 1.01 to 1.83). None of the other 7 cytokines tested predicted HIV risk. Decision tree analyses confirmed this association, with gradients of IP-10, IL-8, and granulocyte-macrophage colony-stimulating factor concentrations correctly classifying 77% of HIV outcomes.
Conclusions: Our findings suggest that mucosa-biased gradients of IP-10, macrophage inflammatory protein-1β, IL-8, and monocyte chemotactic protein-1 are associated with an increased risk of HIV infection.
Genital inflammation is associated with increased HIV acquisition risk. Induction of an inflammatory response can occur through the recognition of pathogenic or commensal microbes by Toll-like receptors (TLRs) on various immune cells. We used a in vitro peripheral blood mononuclear cell (PBMC) system to understand the contribution of TLR stimulation in inducing inflammation and the activation of target T cells, and its effect on HIV susceptibility. PBMCs were stimulated with TLR agonists LPS (TLR4), R848 (TLR7/8), and Pam3CSK4 (TLR1/2), and then infected with HIV NL4-3 AD8. Multiplexed ELISA was used to measure 28 cytokines in cell culture supernatants. Flow cytometry was used to measure the activation state (CD38 and HLA-DR), and CCR5 expression on CD4+ and CD8+ T cells. Although TLR agonists induced higher cytokine and chemokine secretion, they did not significantly activate CD4+ and CD8+ T cells and showed decreased CCR5 expression relative to the unstimulated control. Despite several classes of inflammatory cytokines and chemokines being upregulated by TLR agonists, CD4+ T cells were significantly less infectable by HIV after TLR4-stimulation than the unstimulated control. These data demonstrate that the inflammatory effects that occur in the presence TLR agonist stimulations do not necessarily translate to the activation of T cells. Most importantly, the finding that TLR4-stimulation reduces rather than increases susceptibility of CD4+ T cells to HIV infection in this in vitro system strongly suggests that the increased chemokine and possible antiviral factor expression induced by these TLR agonists play a powerful although complex role in determining HIV infection risk.
The renal kallikrein-kinin system is involved in sodium and water homeostasis, blood pressure regulation and inflammation. Tissue kallikrein and kinin levels were measured in the urine of patients with renal disease and in the urine of living related kidney donors prior to uninephrectomy who served as controls. Tissue kallikrein and kinin B1 and B2 receptors were immunolocalised by confocal microscopy in renal biopsy material from patients with renal disease and controls (fresh autopsy material and normal kidney tissue from nephrectomies for malignancy). Urinary tissue kallikrein excretion was significantly decreased in patients with mild renal disease (16.6 +/- 6.7 ng tissue kallikrein (TK)/ng protein; p < 0.05) and more markedly so (1.8 +/- 0.7 ng TK/microg protein; p < 0.01) in patients with severe renal failure requiring dialysis compared to normal controls (78.9 +/- 31.7 ng TK/microg protein). Basal kinin values were unchanged in patients with renal disease (14 +/- 0.8 ng/ml) compared to controls (13.3 +/- 0.56 ng/ml). In control kidney tissue kallikrein was immunolocalised in the distal connecting tubules and collecting ducts whereas decreased immunolabelling was observed with renal disease. Kinin B2 receptor labelling was present in the entire nephron in the normal control kidney but was reduced with renal disease. While kinin B1 receptor immunolabelling was not observed in the control kidneys, labelling of distal tubules and collecting ducts was noted in renal disease, suggesting an upregulation of B1 receptors in renal parenchymal disease.
Immunologic consequences of exposure to HIV-1 in utero are still poorly understood. This study investigates relationships between type-1 [interferon-γ (IFN-γ)] and type-2 (IL-10) cytokine production and maternal-infant HIV-1 transmission. Cord blood leukocytes from deliveries of 71 HIV-1–infected and 11 uninfected mothers were tested for in vitro IFN-γ and IL-10 production after phytohemagglutinin (PHA) stimulation. The infants of these HIV-1–infected mothers were followed prospectively after birth to determine HIV vertical transmission, and IFN-γ and IL-10 production was measured again at 6 mo. Median PHA-stimulated IFN-γ production was 210 pg/mL in cord blood cells from infected and 73 pg/mL from uninfected mothers (p = 0.12), and median PHA-stimulated IL-10 production was 491 pg/mL in cord blood cells from infected and 161 pg/mL from uninfected mothers (p = 0.004). PHA-stimulated IFN-γ and IL-10 production alone were not significantly associated with transmission, but relationships between the two cytokines differed among infected and uninfected infants of HIV-1–infected mothers. PHA-stimulated IFN-γ and IL-10 production was positively correlated among infected (r = 0.7, p = 0.12 in cord blood and r = 0.66, p = 0.03 at 6 mo) but not uninfected infants, and stronger relative production of IFN-γ to IL-10 was observed among exposed uninfected than among infected infants (p = 0.04). Exposure in utero to HIV-1 may augment production of IL-10 detectable in fetal cord blood. Stronger relative production of IFN-γ to IL-10 in cord blood cells from infants of HIV-1–infected mothers may be associated with protection against perinatal HIV infection.
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Background: Acquired HIV-specific cell-mediated immune responses have been observed in exposed-uninfected individuals, and it has been inferred, but not demonstrated, that these responses constitute a part of natural protective immunity to HIV. This inference was tested prospectively in the natural exposure setting of maternal-infant HIV transmission in a predominantly breast-fed population.
Methods: Cord blood from infants of HIV-seropositive women in Durban, South Africa, were tested for in vitro reactivity to a cocktail of HIV envelope peptides (Env) using a bioassay measuring interleukin-2 production in a murine cell line. Infants were followed with repeat HIV RNA tests up to 18 months of age to establish which ones acquired HIV-infection.
Results: T-helper cell responses to Env were detected in 33 out of 86 (38%) cord blood samples from infants of HIV-seropositive women and in none of nine samples from seronegative women (P = 0.02). Among infants of HIV-seropositive mothers, three out of 33 with T-helper responses to Env were already infected before delivery (HIV RNA positive on the day of birth), two were lost to follow-up, and none of the others (out of 28) were found to be HIV infected on subsequent tests. In comparison, six out of 53 infants unresponsive to Env were infected before delivery, and eight out of 47 (17%) of the others were found to have acquired HIV infection intrapartum or post-partum through breast-feeding (P = 0.02).
Conclusions: T-helper cell responses to HIV envelope peptides were detected in more than one-third of newborns of HIV-infected women; no new infections were acquired by these infants at the time of delivery or post-natally through breast-feeding if these T-helper cell responses were detected in cord blood.
Background: Live oral rotavirus vaccines have been less immunogenic and efficacious for children of developing countries than for those in middle income and industrialized countries, and the basis for these differences is not fully understood. Recently, we demonstrated that breastmilk from mothers in India had significantly higher IgA and neutralizing activity against rotavirus that could reduce the effective titer of rotavirus vaccines reaching the gut when compared with that from mothers in the United States. We extended our study to understand the specific contribution of those nonantibody components in breastmilk to the neutralizing activity against rotavirus vaccine we observed.
Methods: Breastmilk samples were collected from mothers of breast-feeding infants aged between 4 and 29 weeks (ie, vaccine eligible age) in India (N = 40), South Africa (N = 50) and the United States (N = 51). We examined breastmilk for lactoferrin, lactadherin, rotavirus-specific IgA and neutralizing activity against 3 rotavirus vaccine strains (Rotarix, RotaTeq G1 and 116E) using enzyme immunoassays, a plaque reduction assay or a microneutralization assay.
Results: We observed higher levels of lactoferrin, lactadherin, IgA and neutralizing activity in breastmilk specimens from Indian and South African women than those from American women. We demonstrated positive associations between levels of lactoferrin or IgA and neutralizing activity in Indian and South African specimens, but not in American specimens. We demonstrated that the inhibitory effect of lactoferrin was dose- or species-dependent, as evidenced by greater reduction in titer of Rotarix and 116E by human lactoferrin. Lactadherin also exhibited inhibitory activity to rotavirus vaccines but appeared to be less effective.
Conclusions: The lower immunogenicity and efficacy of rotavirus vaccines in developing countries could be explained, in part, by synergistic inhibitory effect of high levels of antibody and nonantibody components in breastmilk consumed by infants at the time of immunization. Therefore, there is a need for alternative rotavirus vaccine strategies in breast-feeding populations.
The use of antiretrovirals (ARVs) as oral, topical, or long-acting pre-exposure prophylaxis (PrEP) has emerged as a promising strategy for HIV prevention. Clinical trials testing Truvada® [tenofovir disoproxil fumarate (TDF)/tenofovir (TFV) and emtricitabine (FTC)] as oral or topical PrEP in African women showed mixed results in preventing HIV infections. Since oral and topical PrEP effectiveness is dependent on adequate drug delivery and availability to sites of HIV infection such as the blood and female genital tract (FGT); host biological factors such as drug transporters have been implicated as key regulators of PrEP. Drug transporter expression levels and function have been identified as critical determinants of PrEP efficacy by regulating PrEP pharmacokinetics across various cells and tissues of the blood, renal tissues, FGT mucosal tissues and other immune cells targeted by HIV. In addition, biological factors such as genetic polymorphisms and genital inflammation also influence drug transporter expression levels and functionality. In this review, drug transporters and biological factors modulating drug transporter disposition are used to explain discrepancies observed in PrEP clinical trials. This review also provides insight at a pharmacological level of how these factors further increase the susceptibility of the FGT to HIV infections, subsequently contributing to ineffective PrEP interventions in African women.
Almost four decades on, since the 1980's, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV's inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment-the female genital tract and the rectal surfaces of the gastrointe
The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.
Background: HIV-1 envelope diversity remains a significant challenge for the development of an efficacious vaccine. The evolutionary forces that shape the diversity of envelope are incompletely understood. HIV-1 subtype C envelope in particular shows significant differences and unique characteristics compared to its subtype B counterpart. Here we applied the single genome sequencing strategy of plasma derived virus from a cohort of therapy naïve chronically infected individuals in order to study diversity, divergence patterns and envelope characteristics across the entire HIV-1 subtype C gp160 in 4 slow progressors and 4 progressors over an average of 19.5 months.
Results: Sequence analysis indicated that intra-patient nucleotide diversity within the entire envelope was higher in slow progressors, but did not reach statistical significance (p = 0.07). However, intra-patient nucleotide diversity was significantly higher in slow progressors compared to progressors in the C2 (p = 0.0006), V3 (p = 0.01) and C3 (p = 0.005) regions. Increased amino acid length and fewer potential N-linked glycosylation sites (PNGs) were observed in the V1-V4 in slow progressors compared to progressors (p = 0.009 and p = 0.02 respectively). Similarly, gp41 in the progressors was significantly longer and had fewer PNGs compared to slow progressors (p = 0.02 and p = 0.02 respectively). Positive selection hotspots mapped mainly to V1, C3, V4, C4 and gp41 in slow progressors, whereas hotspots mapped mainly to gp41 in progressors. Signature consensus sequence differences between the groups occurred mainly in gp41.
Conclusions: These data suggest that separate regions of envelope are under differential selective forces, and that envelope evolution differs based on disease course. Differences between slow progressors and progressors may reflect differences in immunological pressure and immune evasion mechanisms. These data also indicate that the pattern of envelope evolution is an important correlate of disease progression in chronic HIV-1 subtype C infection.
Introduction: Despite extensive prevention campaigns and scale-up of antiretroviral therapy, HIV incidence among young women in southern Africa remains high. While the development of an efficacious vaccine remains a challenge, the discovery of broadly neutralising monoclonal antibodies (mAbs) has created the opportunity to explore passive immunisation as a long-acting injectable HIV prevention strategy. The purpose of this trial is to provide safety, pharmacokinetic (PK) and functional activity data of VRC07-523LS and PGT121 when administered subcutaneously (SC) to young South African women. Going forward, the aim is to select the ideal dose and/or monoclonal antibody for co-formulation and testing with CAP256-VRC26.25LS, a potent monoclonal antibody against subtype C virus, in an efficacy trial.
Methods and analysis: CAPRISA 012A is a randomised, double blinded, placebo-controlled phase I trial to assess the safety and PK profile of two mAbs, VRC07-523LS and PGT121 administered SC to 35 young HIV negative women at low risk for HIV infection. Women will be randomised into seven groups of five participants each. In each group, women will be randomised (4:1) to the active intervention, VRC07-523LS and/or PGT121, or placebo. Participants will be followed up for 24 weeks after the administration of the last dose of study product with a total study duration of 72 weeks. Safety in the study will be assessed by the number and percentage of reactogenicity and adverse events experienced by participants and the relatedness to study product. The PK study design was based on preliminary PK data for VRC07-523LS and PGT121.
Ethics and dissemination: Ethical approval has been granted by the South African Health Products Regulatory Authority and by the University of KwaZulu-Natal Biomedical Research Ethics Committee. Results will be presented at international conferences and published in academic peer-reviewed journals. Trial results will be uploaded on the clinical trial registry.
HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues.
The impact of topical antiretrovirals for pre-exposure prophylaxis on humoral responses following HIV infection is unknown. Using a binding antibody multiplex assay, we investigated HIV-specific IgG and IgA responses to envelope glycoproteins, p24 Gag and p66, in the genital tract (GT) and plasma following HIV acquisition in women assigned to tenofovir gel (n=24) and placebo gel (n=24) in the CAPRISA 004 microbicide trial to assess if this topical antiretroviral had an impact on mucosal and systemic antibody responses. Linear mixed effect modeling and partial least squares discriminant analysis was used to identify multivariate antibody signatures associated with tenofovir use. There were significantly higher response rates to gp120 Env (P=0.03), p24 (P=0.002), and p66 (P=0.009) in plasma and GT in women assigned to tenofovir than placebo gel at multiple time points post infection. Notably, p66 IgA titers in the GT and plasma were significantly higher in the tenofovir compared with the placebo arm (P<0.05). Plasma titers for 9 of the 10 HIV-IgG specificities predicted GT levels. Taken together, these data suggest that humoral immune responses are increased in blood and GT of individuals who acquire HIV infection in the presence of tenofovir gel.