University of Cape Town and Ministry of Scientific Research of Cameroon
Senior Research Officer
The role of proinflammatory cytokines in cognitive function has been investigated with both beneficial and possible detrimental effects, depending on the cytokine. More recently, the type 2 IL-4 has been demonstrated to play a role in cognition. In this study, using the Morris water maze task, we demonstrate that IL-13–deficient mice are significantly impaired in working memory as well as attenuated reference memory, both functions essential for effective complex learning. During the learning process, wild-type mice increased the number of CD4+ T cells in the meninges and production of IL-13, whereas neither Morris water maze–trained IL-4 nor trained IL-13–deficient mice were able to increase CD4+ T cells in the meninges. Mechanistically, we showed that IL-13 is able to stimulate primary astrocytes to produce brain-derived neurotrophic factor, which does foster cognitive functions. Moreover, Morris water maze–trained wild-type mice were able to increase astrocyte-produced glial fibrillary acidic protein in the hippocampus, which was impaired in Morris water maze–trained IL-4– and IL-13–deficient mice. Collectively, this study strongly suggests that the Th2 cytokines, not only IL-4 but also IL-13, are involved in cognitive functions by stimulating astrocytes from the meninges and hippocampus. These results may be important for future development of therapeutic approaches associated with neurologic disorders such as Parkinson disease–associated dementia and HIV-associated dementia among others.
Basic leucine zipper transcription factor 2 (Batf2) activation is detrimental in Type 1-controlled infectious diseases, demonstrated during infection with Mycobacterium tuberculosis (Mtb) and Listeria monocytogenes Lm. In Batf2-deficient mice (Batf2-/-), infected with Mtb or Lm, mice survived and displayed reduced tissue pathology compared to infected control mice. Indeed, pulmonary inflammatory macrophage recruitment, pro-inflammatory cytokines and immune effectors were also decreased during tuberculosis. This explains that batf2 mRNA predictive early biomarker found in active TB patients is increased in peripheral blood. Similarly, Lm infection in human macrophages and mouse spleen and liver also increased Batf2 expression. In striking contrast, Type 2-controlled schistosomiasis exacerbates during infected Batf2-/- mice with increased intestinal fibro-granulomatous inflammation, pro-fibrotic immune cells, and elevated cytokine production leading to wasting disease and early death. Together, these data strongly indicate that Batf2 differentially regulates Type 1 and Type 2 immunity in infectious diseases.
Close to 50 years after the discovery and establishment of praziquantel as an anti-parasitic drug to treat human schistosomiasis, the disease persists and is still a public health concern for hundreds of millions of individuals worldwide. Although the wide implementation of mass drug administration campaigns in endemic areas has considerably helped to reduce the prevalence and burden of the disease encouraging a change of narrative from infection control to elimination, the lack of regular monitoring studies in endemic areas has crippled the development of adequately tailored strategies to ensure the site-specific interruption of the disease transmission. Here, we screened 525 schoolchildren including the most affected age groups in two sites in rural Cameroon, a country of close to 20 million inhabitants with 2 million infected individuals and more than 5 million living in rural areas infested with S. mansoni and S. haematobium causing hepatointestinal and urogenital schistosomiasis, respectively. In the studied sites, praziquantel has been administered for the past decade once annually to schoolchildren via a well sustained national control program. We found that just 8 months following the last mass drug treatment, prevalence of infection persisted at alarming levels with older children being more at risk of infection, unveiling the inadequacy of limiting drug treatment to young schoolchildren rather than including the whole community with older individuals. Abnormalities of the urinary bladder were more severe when compared to liver lesions arguing for a more frequent regimen of drug administration on the S. haematobium site in particular. Females presented with a higher risk of infection in the S. mansoni site while contact with the surrounding river waters favored infection at both sites. Overall, a need for further education of the population on the debilitating risk of poor hygienic practices and contact with infested river was identified. Intriguingly, analyses on the S. mansoni site revealed a negative association of schistosomiasis on measles vaccine elicited-responses, further reinstating the morbid nature of schistosomiasis on our communities. Our survey, while appraising the extent of disease distribution and impact in two endemic areas also provides guidelines to ameliorate the fight against schistosomiasis, gearing towards more informed approaches for the elimination and not just the control of the disease.
Development of IL-4 receptor alpha (IL-4Rα)-dependent cellular immunity regulates host protection against acute schistosomiasis. In this study, we investigated the importance of IL-4Rα-expressing CD11c+ cells in driving the development of optimal cellular responses to Schistosoma mansoni infection by using CD11ccre IL-4Rα-/lox BALB/c mice, which lacked IL-4Rα expression on dendritic cells and alveolar macrophages. Abrogation of IL-4Rα expression on CD11c+ cells affected activation of CD4+ T cells, resulting in reduced numbers of effector CD4+ T cells and impaired production of Th1 and Th2 cytokines by CD4+ T cells ex vivo. However, secretion of both type 1 and type 2 Ab isotypes was unchanged in infected CD11c-specific IL-4Rα-deficient mice compared to littermate controls. Together, these data demonstrate that IL-4Rα-expressing CD11c+ cells play an important role in maintaining cellular immunity during schistosomiasis in mice.
Cestode-mediated diseases hold the interesting feature of persisting metacestode larvae dwelling within the host tissues, in the midst of the immune response. Excretory-secretory (ES) products of the metacestode larval stage modulate the host immune response and modify the outcome of the disease. Therefore, isolation and analysis of axenic metacestode ES products are crucial to study their properties. Here, we report the development of a system for long-term in vitro cultivation of the metacestode of the parasitic cestode Mesocestoides corti (syn. Mesocestoides vogae). Although feeder cells and host serum supported the early growth of the parasite, long-term survival was not dependent on host serum or host-derived factors enabling the collection of parasite released products in serum-free medium. Functionally, these axenic ES products recapitulated M. corti tetrathyridia's ability to inhibit LPS-driven IL-12p70 secretion by dendritic cells. Thus, our new axenic culture system will simplify the identification and characterization of M. corti-derived immunomodulatory factors that will indirectly enable the identification and characterization of corresponding factors in the metacestode larvae of medically relevant cestodes such as Echinococcus multilocularis that are not yet amenable to serum-free cultivation.
Interleukin-4 receptor (IL-4Rα) is critical for the initiation of type-2 immune responses and implicated in the pathogenesis of experimental schistosomiasis. IL-4Rα mediated type-2 responses are critical for the control of pathology during acute schistosomiasis. However, type-2 responses tightly associate with fibrogranulomatous inflammation that drives host pathology during chronic schistosomiasis. To address such controversy on the role of IL-4Rα, we generated a novel inducible IL-4Rα-deficient mouse model that allows for temporal knockdown of il-4rα gene after oral administration of Tamoxifen. Interrupting IL-4Rα mediated signaling during the acute phase impaired the development of protective type-2 immune responses, leading to rapid weight loss and premature death, confirming a protective role of IL-4Rα during acute schistosomiasis. Conversely, IL-4Rα removal at the chronic phase of schistosomiasis ameliorated the pathological fibro-granulomatous pathology and reversed liver scarification without affecting the host fitness. This amelioration of the morbidity was accompanied by a reduced Th2 response and increased frequencies of FoxP3+ Tregs and CD1dhiCD5+ Bregs. Collectively, these data demonstrate that IL-4Rα mediated signaling has two opposing functions during experimental schistosomiasis depending on the stage of advancement of the disease and indicate that interrupting IL-4Rα mediated signaling is a viable therapeutic strategy to ameliorate liver fibroproliferative pathology in diseases like chronic schistosomiasis.
Liver fibrosis is a wound-healing process purposely aimed at restoring organ integrity after severe injury caused by autoimmune reactions, mechanical stress or infections. The uncontrolled solicitation of this process is pathogenic and a pathognomonic feature of diseases like hepatosplenic schistosomiasis where exacerbated liver fibrosis is centrally positioned among the drivers of the disease morbidity and mortality. Intriguingly, however, liver fibrosis occurs and progresses dissimilarly in schistosomiasis-diseased individuals with the same egg burden and biosocial features including age, duration of residence in the endemic site and gender. This suggests that parasite-independent and currently poorly defined host intrinsic factors might play a defining role in the regulation of liver fibrosis, the hallmark of morbidity, during schistosomiasis. In this review, we therefore provide a comprehensive overview of all known host candidate regulators of liver fibrosis reported in the context of human schistosomiasis.
Schistosomiasis (bilharzia) is a parasitic helminth disease that can cause severe inflammatory pathology leading to organ damage in humans. Failure of the host to regulate egg-driven granulomatous inflammation causes host morbidity during chronic infection with Schistosoma mansoni. Although the importance of B cells in regulating pathology during chronic infection has been well defined, the specific contribution of IL-4Rα-expressing B cells is still unknown. To address this, we examined B cell-specific IL-4Rα-deficient (mb1creIL-4Rα-/lox) mice in three experimental models of schistosomiasis: high-dose (100 cercariae), low dose (30 cercariae), and a synchronous egg challenge. In the high dose model, we found that mice deficient in IL-4Rα-expressing B cells were more susceptible to acute schistosomiasis than B cell-deficient (μMT) mice, succumbing to infection at the acute stage whereas μMT mice survived until the chronic stage. An S. mansoni egg challenge model demonstrated that deleting IL-4Rα expression specifically on B cells resulted in increased lung granulomatous pathology, suggesting a role for this B cell subset in controlling granulomatous pathology. In agreement with this, a low dose model of schistosomiasis-which mimics the course of clinical chronic disease-demonstrated that depleting IL-4Rα-expressing B cells in mb1creIL-4Rα-/lox mice considerably impaired the host ability to down-modulate granulomatous inflammation in the liver and gut during chronic schistosomiasis. Taken together, our findings indicate that within the B cell compartment, IL-4Rα-expressing B cells in particular down-modulate the deleterious egg-driven tissue granulomatous inflammation to enable host survival during schistosomiasis in mice.
Alveolar echinococcosis (AE), caused by the metacestode of the tapeworm Echinococcus multilocularis, is a lethal zoonosis associated with host immunomodulation. T helper cells are instrumental to control the disease in the host. Whereas Th1 cells can restrict parasite proliferation, Th2 immune responses are associated with parasite proliferation. Although the early phase of host colonization by E. multilocularis is dominated by a potentially parasitocidal Th1 immune response, the molecular basis of this response is unknown.
We describe EmTIP, an E. multilocularis homologue of the human T-cell immunomodulatory protein, TIP. By immunohistochemistry we show EmTIP localization to the intercellular space within parasite larvae. Immunoprecipitation and Western blot experiments revealed the presence of EmTIP in the excretory/secretory (E/S) products of parasite primary cell cultures, representing the early developing metacestode, but not in those of mature metacestode vesicles. Using an in vitro T-cell stimulation assay, we found that primary cell E/S products promoted interferon (IFN)-γ release by murine CD4+ T-cells, whereas metacestode E/S products did not. IFN-γ release by T-cells exposed to parasite products was abrogated by an anti-EmTIP antibody. When recombinantly expressed, EmTIP promoted IFN-γ release by CD4+ T-cells in vitro. After incubation with anti-EmTIP antibody, primary cells showed an impaired ability to proliferate and to form metacestode vesicles in vitro.
We provide for the first time a possible explanation for the early Th1 response observed during E. multilocularis infections. Our data indicate that parasite primary cells release a T-cell immunomodulatory protein, EmTIP, capable of promoting IFN-γ release by CD4+ T-cells, which is probably driving or supporting the onset of the early Th1 response during AE. The impairment of primary cell proliferation and the inhibition of metacestode vesicle formation by anti-EmTIP antibodies suggest that this factor fulfills an important role in early E. multilocularis development within the intermediate host.
Liver fibrosis is a wound-healing process purposely aimed at restoring organ integrity after severe injury caused by autoimmune reactions, mechanical stress or infections. The uncontrolled solicitation of this process is pathogenic and a pathognomonic feature of diseases like hepatosplenic Schistosomiasis where exacerbated liver fibrosis is centrally positioned among the drivers of the disease morbidity and mortality. Intriguingly, however, liver fibrosis occurs and progresses dissimilarly in schistosomiasis-diseased individuals with the same egg burden and biosocial features including age, duration of residence in the endemic site and gender. This suggests that parasite-independent and currently poorly defined host intrinsic factors might play a defining role in the regulation of liver fibrosis, the hallmark of morbidity, during schistosomiasis. In this review, we therefore provide a comprehensive overview of all known host candidate regulators of liver fibrosis reported in the context of human schistosomiasis.
Beyond transient control of the infection, additional benefits of mass drug administration of praziquantel in endemic communities have been suggested in communities but not mechanistically investigated experimentally. The present study sought to evaluate the additional and hitherto unreported benefits of repeated mass drug administration of praziquantel. We used a tractable mouse model of Schistosoma mansoni infection to assess the effects of repeated infection-treatment cycles on the host susceptibility to reinfection. Parasitaemia was assessed by quantification of Schistosoma egg burden in liver tissues and morbidity was followed up by histological observation of liver lesions by microscopy and using biochemical measurement of liver transaminases. Immune responses were further determined by serum probing of schistosoma-specific antibodies, cytokines and quantification of liver cellular and soluble mediator responses by flow cytometry and ELISA, respectively. At similar ages and comparable gender distribution, groups of mice undergoing higher number of infections treatment cycles over a longer period, remained susceptible to reinfection by the parasite, as judged by the presence of eggs and the associated increasing pathology in the liver tissues. However, notably, there was a clear and significantly higher propensity to lower egg burden upon reinfection when compared to counterparts undergoing a lower number of infection-treatment cycles. This relative reduction of susceptibility to infection was paralleled by a more robust humoral response against parasite antigens, elevated serum IL-4 and liver cytokines. Of note, praziquantel treatment of infected mice left them at a higher baseline of serum IL-4, IgE and liver cytokines but lower CD4+ T cell -derived cytokines when compared to infected non-treated mice supporting an immunological treatment-induced advantage of previously infected mice over naïve mice and infected/not treated mice. Notably, repeated infection-treatment cycles did not preclude the infection-driven aggravation of collagen deposition in the livers over time and was corroborated by a more robust local production of inflammatory cytokines in the most exposed livers. Taken together, our data reveal that treatment of S. mansoni-infected hosts with praziquantel rewires the immune system to a conformation less permissive to subsequent reinfection in mice. Provided the data are translatable from mouse to human, our findings may provide mechanistic support to the potential benefits of more frequent MDAs in high transmission areas to allow rapid acquisition of protective immunity against reinfection.
Schistosomiasis is a debilitating helminthiasis which commonly establishes as a chronic infection in people from endemic areas. As a potent modulator of the host immune response, the Schistosoma parasite and its associated products can directly interfere with its host’s ability to mount adequate immune responses to unrelated antigens. As a result, increased attention is gathering on studies assessing the influence of helminths, particularly the causal agent of schistosomiasis, on host responsiveness to vaccines. However, to date, no consensus has been drawn regarding the influence of schistosomiasis on host vaccine responses. Here, we review available evidence on the influence of transgenerational and direct Schistosoma parasite exposure on host immune responses to unrelated vaccines. In addition, we evaluate the potential of praziquantel (PZQ) treatment in restoring schistosomiasis-impacted vaccine responses.
Forkhead box P3 (Foxp3+) regulatory T (Treg)-cell function is controlled by environmental cues of which cytokine-mediated signaling is a dominant component. In vivo, interleukin-4 (IL-4)-mediated signaling via IL-4 receptor alpha (IL-4Rα) mediates Treg cell transdifferentiation into ex-Foxp3 T helper 2 (Th2) or T helper 17 (Th17) cells. However, IL-4-mediated signaling also reinforces the Foxp3 Treg compartment in vitro. We generated Foxp3-specific IL-4Rα-deficient mice and demonstrated differential efficiency of IL-4Rα deletion in male (approximately 90%) and female (approximately 40%) animals, because of cyclic recombinase (Cre)-mediated X-linked foxp3 inactivation. Irrespective of the degree of IL-4Rα deletion within the Foxp3+ Treg cell population, mice showed exacerbation of immune effector responses with aggravated tissue pathology in tissue-dwelling helminth infections (Schistosoma mansoni or Nippostrongylus brasiliensis). Mechanistically, IL-4Rα deletion in males and females led to a reduced expression of Foxp3 and subsequently an impaired accumulation of Foxp3+ Treg cells to inflamed tissues. In-depth cellular typing by flow cytometry revealed that the impairment of IL-4Rα-mediated signaling during helminth infections decreased the ability of central Treg cells to convert into effector Treg (eTreg) cells and caused a significant down-regulation of markers associated with Treg cell migration (C-X-C motif chemokine receptor 3 [CXCR3]) and accumulation in inflamed tissues (GATA binding protein 3 [GATA3]) as well as survival (B cell lymphoma 2 [Bcl-2]). These findings unprecedentedly, to our knowledge, uncover a role for IL-4Rα signaling in the positive regulation of Foxp3+ Treg cell function in vivo. Complementing our past knowledge on a widely reported role for IL-4Rα signaling in the negative regulation and transdifferentiation of Foxp3+ Treg cells in vivo, our present findings reveal the host requirement for an intact, but not reduced or potentiated, IL-4Rα-mediated signaling on Foxp3+Treg cells to optimally control inflammation during helminth infections.
The grading system for ultrasonographic assessment of Schistosoma mansoni morbidity is crucial for evaluation of control programs. This requires prior definition of normal liver organometric ranges in the population from the endemic area. A cross-sectional study was conducted in a S. mansoni endemic area in rural Cameroon. 1002 Participants were screened and 234 of them, free from all common liver-affecting diseases in the area (schistosomiasis, malaria, hepatitis B and C) and with no ultrasonographic signs of liver disease were selected and their liver parameters measured by ultrasonography. All statistics were considered significant for p-values < 0.05. Normal dimensions of livers lobe sizes, portal vein wall thickness and portal vein diameters are reported. The liver organometric data are presented for the entire study population as a whole and separately for males and females as prediction plots, with observed values and fitted regression line with 95% confidence. Reference ranges for liver parameters (size, portal vein thickness and diameter) adjusted for body height established in the current study are novel for Cameroon. The prediction plots generated should improve the accuracy of the assessment of liver morbidity by ultrasonography in the region.
Alveolar echinococcosis, caused by Echinococcus multilocularis larvae, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that E.multilocularis, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action.
We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with Echinococcus primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naïve T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3+ T cells in vitro.
This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of E. multilocularis is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4+CD25+Foxp3+ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.
There is currently no vaccine against parasitic nematodes and the knowledge on the mechanisms by which protective immunity against this class of parasites is achieved is continuously expanding. Nematode parasites trigger a host protective type 2 immune response via interleukin-4 receptor alpha (IL-4Rα). Despite this central role, it is not known whether IL-4Rα has a role in maintaining host type 2 immune responses following polarization. To determine the role of IL-4Rα after polarization, we used a recently established strain of rosaCreERT2-/+IL-4Rα-/Lox mice where il4rα gene deletion can be temporally controlled. We show that sustained expression of IL-4Rα is required for the maintenance of type 2 immune responses and protective immunity following interruption after polarization with Nippostrongylus brasiliensis primary infection. Moreover, we show by temporal deletion of IL-4Rα prior to secondary infection with N. brasiliensis that signaling via this receptor drives more efficient recall of type 2 immune responses and clearance of the parasites. Together, this study demonstrates that sustained IL-4Rα mediated signaling is required for the maintenance of anti-nematode type 2 immune responses, describing a novel function for IL-4Rα that is distinct from its role in immune polarization.
Background: This study aimed to investigate the association of plasma levels of IL-33, a mucosal alarmin known to elicit type-2 immunity, with infection and liver fibrosis profiles of school children from an endemic area for Schistosoma mansoni, malaria and hepatitis (B & C) in rural Cameroon. Methods: A cross-sectional study enrolling schoolchildren from 5 public schools was conducted. Single schistosomiasis, malaria and hepatitis infections or co-infections were assessed by kato katz, microscopy, and rapid diagnostic tests, respectively. Hepatic fibrosis was assessed by ultrasound according to WHO Niamey guidelines and plasma levels of Interleukin 33 were determined by ELISA. All statistics were performed using R studio software. Principal findings: We found a prevalence of 13.5% (37/275), 18.2% (50/275), and 8% (22/275), respectively for schistosomiasis, malaria and hepatitis (B or C) single infections. Only 7.6% (21/275) of co-infections were reported. Although Plasma IL-33 showed a minimal negative risk for schistosomiasis infection (AOR 0.99; 95% CI 0.97-1.01), S. mansoni infected participants had lower levels of plasma IL-33 (p = 0.003) which decreased significantly as eggs burdens increased (p = 0.01) with a negative Pearson coefficient of r = -0.22. Hepatic fibrosis occurred in 47.3% (130/275) of our study population independently from plasma levels of IL-33 (AOR 1.00; 95% CI 0.99-1.01). Conclusion/Significance: Our data failed to show an association between plasma IL-33 levels and liver disease but convincingly report on a negative association between plasma IL-33 levels and schistosomiasis infection and egg burden in school children from a polyparasitic schistosomiasis endemic area.
Interleukin-4 (IL-4)-induced T helper (Th) 2 cells promote susceptibility to the protozoan parasite Leishmania major, while conferring immunity to the intestinal trematode Schistosoma mansoni Here, we report that abrogation of IL-4 receptor alpha (IL-4Rα) signaling on B cells in BALB/c mice (mb1creIL-4Rα-/lox) transformed nonhealer BALB/c to a healer phenotype with an early type 1 and dramatically reduced type 2immune response and an absence of ulceration and necrosis during cutaneous leishmaniasis. From adoptive reconstitution and mixed bone-marrow chimera studies in B cell-deficient (µMT) mice, we reveal a central role for B cell-derived IL-4 and IL-4Rα in the optimal induction of the susceptible type 2 phenotype to L. major infection. We further demonstrate that the absence of IL-4Rα signaling on B cells exacerbated S. mansoni-induced mortality and pathology in BALB/c mice, due to a diminished type 2 immune response. In both disease models, IL-4Rα-responsive B cells displayed increased IL-4 production as early as day 1 after infection. Together, these results demonstrate that IL-4-producing and IL-4Rα-responsive B cells are critical in regulating and assisting early T helper dichotomy toward Th2 responses, which are detrimental in cutaneous leishmaniasis but beneficial in acute schistosomiasis.
Accumulating evidences have assigned a central role to parasite-derived proteins in immunomodulation. Here, we report on the proteomicidentification and characterization of immunomodulatory excretory-secretory (ES) products from the metacestode larva (tetrathyridium) of the tapeworm Mesocestoides corti (syn. M. vogae). We demonstrate that ES products but not larval homogenates inhibit the stimuli-driven release of the pro-inflammatory, Th1-inducing cytokine IL-12p70 by murine bone marrow-derived dendritic cells (BMDCs). Within the ES fraction, we biochemically narrowed down the immunosuppressive activity to glycoproteins since active components were lipid-free, but sensitive to heat- and carbohydrate-treatment. Finally, using bioassay-guided chromatographic analyses assisted by comparative proteomics of active and inactive fractions of the ES products, we defined a comprehensive list of candidate proteins released by M. corti tetrathyridia as potential suppressors of DC functions. Our study provides a comprehensive library of somatic and ES products and highlight some candidate parasite factors that might drive the subversion of DC functions to facilitate the persistence of M. corti tetrathyridia in their hosts.
Schistosomiasis is a potentially lethal parasitic disease that profoundly impacts systemic immune function in chronically infected hosts through mechanisms that remain unknown. Given the immunoregulatory dysregulation experienced in infected individuals, this study examined the impact of chronic schistosomiasis on the sustainability of vaccine-induced immunity in both children living in endemic areas and experimental infections in mice. Data show that chronic Schistosoma mansoni infection impaired the persistence of vaccine specific antibody responses in poliovirus-vaccinated humans and mice. Mechanistically, schistosomiasis primarily fostered plasmablast and plasma cell death in the bone marrow and removal of parasites following praziquantel treatment reversed the observed cell death and partially restored vaccine-induced memory responses associated with increased serum anti-polio antibody responses. Our findings strongly suggest a previously unrecognized mechanism to explain how chronic schistosomiasis interferes with an otherwise effective vaccine regimen and further advocates for therapeutic intervention strategies that reduce schistosomiasis burden in endemic areas prior to vaccination.
Schistosomiasis is a debilitating helminthiasis which commonly establishes as a chronic infection in people from endemic areas. As a potent modulator of the host immune response, the Schistosoma parasite and its associated products can directly interfere with its host's ability to mount adequate immune responses to unrelated antigens. As a result, increased attention is gathering on studies assessing the influence of helminths, particularly the causal agent of schistosomiasis, on host responsiveness to vaccines. However, to date, no consensus has been drawn regarding the influence of schistosomiasis on host vaccine responses. Here, we review available evidence on the influence of transgenerational and direct Schistosoma parasite exposure on host immune responses to unrelated vaccines. In addition, we evaluate the potential of praziquantel (PZQ) treatment in restoring schistosomiasis-impacted vaccine responses.